首页> 外文OA文献 >Hierarchical 1D/3D Approach for the Development of a Turbulent Combustion Model Applied to a VVA Turbocharged Engine. Part I: Turbulence Model
【2h】

Hierarchical 1D/3D Approach for the Development of a Turbulent Combustion Model Applied to a VVA Turbocharged Engine. Part I: Turbulence Model

机译:用于VVA涡轮增压发动机的湍流燃烧模型开发的分层1D / 3D方法。第一部分:湍流模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is widely recognized that air-fuel mixing, combustion and pollutant formation inside internal combustion engines are strongly influenced by the spatial and temporal evolution of both marco- and micro- turbulent scales. Particularly, in spark ignited\udengines, the generation of a proper level of turbulence intensity for the correct development of the flame front is traditionally based on the onset, during the intake and compression strokes, of a tumbling macro-structure.\udRecently, in order to both reduce pumping losses due to throttling and develop advanced and flexible engine control strategies,\udfully variable valve actuation systems have been introduced, capable of simultaneously governing both valve phasing and lift.\udDespite the relevant advantages in terms of intake system efficiency, this technology introduces uncertainties on the capability of the intake port/valve assembly to generate, at low loads, sufficiently coherent and stable structures, able therefore to promote\udadequate turbulence levels towards the end of the compression, with relevant effects on the flame front development.\udIt is a common knowledge that 3D-CFD codes are able to describe the evolution of the in-cylinder flow field and of the\udsubsequent combustion process with good accuracy; however, they require too high computational time to analyze the engine\udperformance for the whole operating domain. On the contrary, this task is easily accomplished by 1D codes, where, however, the\udcombustion process is usually derived from experimental measurements of the in-cylinder pressure trace (Wiebe correlation).\udThis approach is poorly predictive for the simulation of operating conditions relevantly different from the experimental ones. To\udovercome the above described issues, enhanced physical models for the description of in-cylinder turbulence evolution and combustion to be included in a 1D modeling environment are mandatory.\udIn the present paper (part I), a 0D (i.e. homogeneous and isotropic) phenomenological (i.e. sensitive to the variation of operative\udparameters such as valve phasing, valve lift, intake and exhaust pressure levels, etc.) turbulence model belonging to the K-k\udmodel family is presented in detail. The model is validated against in-cylinder results provided by 3D-CFD analyses carried out with the Star-CD code for motored engine operations. In particular, a currently produced small turbocharged VVA engine is analyzed at different speeds, with valve actuations typical of full load and partial load (EIVC) operations, as well.\udThe proposed turbulence model shows the capability, once tuned, to accurately estimate the temporal evolution of the in-cylinder turbulence according to the engine operating conditions. In the subsequent part II of the same paper, the developed turbulence model will be employed within a quasi-dimensional fractal combustion model.
机译:众所周知,内燃机内部的空气-燃料混合,燃烧和污染物形成受到马克波和微湍流尺度的时空演变的强烈影响。特别是,在火花点火\ ud发动机中,通常会根据进气冲程和压缩冲程开始时宏观结构的翻滚来生成适当水平的湍流强度,以正确地形成火焰锋。为了减少节流造成的泵送损失并开发先进灵活的发动机控制策略,引入了非常可变的气门致动系统,能够同时控制气门的相位和升程。\ ud尽管在进气系统效率方面具有相关优势,这项技术给进气口/气门组件在低负荷下产生足够连贯和稳定的结构的能力带来了不确定性,因此,在压缩结束时能够促进\足够的湍流水平,并对火焰前移产生相关影响\ ud是3D-CFD代码能够描述缸内流的演变的常识领域和随后的燃烧过程,精度很高;但是,它们需要太多的计算时间才能分析整个操作域的引擎\ ud性能。相反,此任务很容易通过一维代码完成,但是,\燃烧过程通常来自缸内压力曲线的实验测量值(维比相关性)。\ ud这种方法对于模拟运行很难预测条件与实验条件明显不同。为了克服上述问题,必须在1D建模环境中包括用于描述缸内湍流演变和燃烧的增强型物理模型。\ ud在本文(第I部分)中,0D(即均质和各向同性) )现象学(即,对操作参数的变化(如气门相位,气门升程,进气和排气压力水平等敏感)敏感,详细介绍了属于Kk \ udmodel家族的湍流模型。该模型针对3D-CFD分析提供的缸内结果进行了验证,该分析是通过Star-CD代码对机动发动机进行的。特别是,目前生产的小型涡轮增压VVA发动机在不同速度下也进行了分析,同时还具有典型的全负荷和部分负荷(EIVC)操作的气门致动。\ ud提议的湍流模型表明,一旦进行调整,就可以准确估算出缸内湍流随发动机工况的时间演变。在同一篇论文的后续第二部分中,将在拟维分形燃烧模型中采用已开发的湍流模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号